269 research outputs found

    Finding Bit-Based Division Property for Ciphers with Complex Linear Layers

    Get PDF
    The bit-based division property (BDP) is the most effective technique for finding integral characteristics of symmetric ciphers. Recently, automatic search tools have become one of the most popular approaches to evaluating the security of designs against many attacks. Constraint-aided automatic tools for the BDP have been applied to many ciphers with simple linear layers like bit-permutation. Constructing models of complex linear layers accurately and efficiently remains hard. A straightforward method proposed by Sun et al. (called the S method), decomposes a complex linear layer into basic operations like COPY and XOR, then models them one by one. However, this method can easily insert invalid division trails into the solution pool, which results in a quicker loss of the balanced property than the cipher itself would. In order to solve this problem, Zhang and Rijmen propose the ZR method to link every valid trail with an invertible sub-matrix of the matrix corresponding to the linear layer, and then generate linear inequalities to represent all the invertible sub-matrices. Unfortunately, the ZR method is only applicable to invertible binary matrices (defined in Definition 3).To avoid generating a huge number of inequalities for all the sub-matrices, we build a new model that only includes that the sub-matrix corresponding to a valid trail should be invertible. The computing scale of our model can be tackled by most of SMT/SAT solvers, which makes our method practical. For applications, we improve the previous BDP for LED and MISTY1. We also give the 7-round BDP results for Camellia with FL/FL−1, which is the longest to date.Furthermore, we remove the restriction of the ZR method that the matrix has to be invertible, which provides more choices for future designs. Thanks to this, we also reproduce 5-round key-dependent integral distinguishers proposed at Crypto 2016 which cannot be obtained by either the S or ZR methods

    Multidimensional zero-correlation attacks on lightweight block cipher HIGHT: Improved cryptanalysis of an ISO standard

    Get PDF
    AbstractHIGHT is a block cipher designed in Korea with the involvement of Korea Information Security Agency. It was proposed at CHES 2006 for usage in lightweight applications such as sensor networks and RFID tags. Lately, it has been adopted as ISO standard. Though there is a great deal of cryptanalytic results on HIGHT, its security evaluation against the recent zero-correlation linear attacks is still lacking. At the same time, the Feistel-type structure of HIGHT suggests that it might be susceptible to this type of cryptanalysis. In this paper, we aim to bridge this gap.We identify zero-correlation linear approximations over 16 rounds of HIGHT. Based upon those, we attack 27-round HIGHT (round 4 to round 30) with improved time complexity and practical memory requirements. This attack of ours is the best result on HIGHT to date in the classical single-key setting. We also provide the first attack on 26-round HIGHT (round 4 to round 29) with the full whitening key

    Automatic Search for A Variant of Division Property Using Three Subsets (Full Version)

    Get PDF
    The division property proposed at Eurocrypt\u2715 is a novel technique to find integral distinguishers, which has been applied to most kinds of symmetric ciphers such as block ciphers, stream ciphers, and authenticated encryption,~\textit{etc}. The original division property is word-oriented, and later the bit-based one was proposed at FSE\u2716 to get better integral property, which is composed of conventional bit-based division property (two-subset division property) and bit-based division property using three subsets (three-subset division property). Three-subset division property has more potential to achieve better integral distinguishers compared with the two-subset division property. The bit-based division property could not be to apply to ciphers with large block sizes due to its unpractical complexity. At Asiacrypt\u2716, the two-subset division property was modeled using Mixed Integral Linear Programming (MILP) technique, and the limits of block sizes were eliminated. However, there is still no efficient method searching for three-subset division property. The propagation rule of the \texttt{XOR} operation for L\mathbb{L} \footnote{The definition of L\mathbb{L} and K\mathbb{K} is introduced in Section 2.}, which is a set used in the three-set division property but not in two-set one, requires to remove some specific vectors, and new vectors generated from L\mathbb{L} should be appended to K\mathbb{K} when \texttt{Key-XOR} operation is applied, both of which are difficult for common automatic tools such as MILP, SMT or CP. In this paper, we overcome one of the two challenges, concretely, we address the problem to add new vectors into K\mathbb{K} from L\mathbb{L} in an automatic search model. Moreover, we present a new model automatically searching for a variant three-subset division property (VTDP) with STP solver. The variant is weaker than the original three-subset division property (OTDP) but it is still powerful in some ciphers. Most importantly, this model has no constraints on the block size of target ciphers, which can also be applied to ARX and S-box based ciphers. As illustrations, some improved integral distinguishers have been achieved for SIMON32, SIMON32/48/64(102), SPECK32 and KATAN/KTANTAN32/48/64 according to the number of rounds or number of even/odd-parity bits

    Exact values and improved bounds on kk-neighborly families of boxes

    Full text link
    A finite family F\mathcal{F} of dd-dimensional convex polytopes is called kk-neighborly if d−k≤dim(C∩C′)≤d−1d-k\le\textup{dim}(C\cap C')\le d-1 for any two distinct members C,C′∈FC,C'\in\mathcal{F}. In 1997, Alon initiated the study of the general function n(k,d)n(k,d), which is defined to be the maximum size of kk-neighborly families of standard boxes in Rd\mathbb{R}^{d}. Based on a weighted count of vectors in {0,1}d\{0,1\}^{d}, we improve a recent upper bound on n(k,d)n(k,d) by Alon, Grytczuk, Kisielewicz, and Przes\l awski for any positive integers dd and kk with d≥k+2d\ge k+2. In particular, when dd is sufficiently large and k≥0.123dk\ge 0.123d, our upper bound on n(k,d)n(k,d) improves the bound ∑i=1k2i−1(di)+1\sum_{i=1}^{k}2^{i-1}\binom{d}{i}+1 shown by Huang and Sudakov exponentially. Furthermore, we determine that n(2,4)=9n(2,4)=9, n(3,5)=18n(3,5)=18, n(3,6)=27n(3,6)=27, n(4,6)=37n(4,6)=37, n(5,7)=74n(5,7)=74, and n(6,8)=150n(6,8)=150. The stability result of Kleitman's isodiametric inequality plays an important role in the proofs.Comment: 17 pages. The main results were further improve

    SoK: Modeling for Large S-boxes Oriented to Differential Probabilities and Linear Correlations (Long Paper)

    Get PDF
    Automatic methods for differential and linear characteristic search are well-established at the moment. Typically, the designers of novel ciphers also give preliminary analytical findings for analysing the differential and linear properties using automatic techniques. However, neither MILP-based nor SAT/SMT-based approaches have fully resolved the problem of searching for actual differential and linear characteristics of ciphers with large S-boxes. To tackle the issue, we present three strategies for developing SAT models for 8-bit S-boxes that are geared toward differential probabilities and linear correlations. While these approaches cannot guarantee a minimum model size, the time needed to obtain models is drastically reduced. The newly proposed SAT model for large S-boxes enables us to establish that the upper bound on the differential probability for 14 rounds of SKINNY-128 is 2^{-131}, thereby completing the unsuccessful work of Abdelkhalek et al. We also analyse the seven AES-based constructions C1 - C7 designed by Jean and Nikolic and compute the minimum number of active S-boxes necessary to cause an internal collision using the SAT method. For two constructions C3 and C5, the current lower bound on the number of active S-boxes is increased, resulting in a more precise security analysis for these two structures

    Key-Recovery Attacks on CRAFT and WARP (Full Version)

    Get PDF
    This paper considers the security of CRAFT and WARP. We present a practical key-recovery attack on full-round CRAFT in the related-key setting with only one differential characteristic, and the theoretical time complexity of the attack is 236.092^{36.09} full-round encryptions. The attack is verified in practice. The test result indicates that the theoretical analysis is valid, and it takes about 15.6915.69 hours to retrieve the key. A full-round key-recovery attack on WARP in the related-key setting is proposed, and the time complexity is 244.582^{44.58} full-round encryptions. The theoretical attack is implemented on a round-reduced version of WARP, which guarantees validity. Besides, we give a 33-round multiple zero-correlation linear attack on WARP, which is the longest attack on the cipher in the single-key attack setting. We note that the attack results in this paper do not threaten the security of CRAFT and WARP as the designers do not claim security under the related-key attack setting

    More Accurate Differential Properties of LED64 and Midori64

    Get PDF
    In differential cryptanalysis, a differential is more valuable than the single trail belonging to it in general. The traditional way to compute the probability of the differential is to sum the probabilities of all trails within it. The automatic tool for the search of differentials based on Mixed Integer Linear Programming (MILP) has been proposed and realises the task of finding multiple trails of a given differential. The problem is whether it is reliable to evaluate the probability of the differential traditionally. In this paper, we focus on two lightweight block ciphers – LED64 and Midori64 and show the more accurate estimation of differential probability considering the key schedule. Firstly, an automated tool based on Boolean Satisfiability Problem (SAT) is put forward to accomplish the automatic search of differentials for ciphers with S-boxes and is applied to LED64 and Midori64. Secondly, we provide an automatic approach to detect the right pairs following a given differential, which can be exploited to calculate the differential property. Applying this technique to the STEP function of LED64, we discover some differentials with enhanced probability. As a result, the previous attacks relying upon high probability differentials can be improved definitely. Thirdly, we present a method to compute an upper-bound of the weak-key ratio for a given differential, which is utilised to analyse 4-round differentials of Midori64. We detect two differentials whose weak-key ratios are much lower than the expected 50%. More than 78% of the keys will make these two differentials being impossible differentials. The idea of the estimation for an upper-bound of the weak-key ratio can be employed for other ciphers and allows us to launch differential attacks more reliably. Finally, we introduce how to compute the enhanced differential probability and evaluate the size of keys achieving the improved probability. Such a property may incur an efficient weak-key attack. For a 4-round differential of Midori64, we obtain an improved differential property for a portion of keys

    Linear Cryptanalyses of Three AEADs with GIFT-128 as Underlying Primitives

    Get PDF
    This paper considers the linear cryptanalyses of Authenticated Encryptions with Associated Data (AEADs) GIFT-COFB, SUNDAE-GIFT, and HyENA. All of these proposals take GIFT-128 as underlying primitives. The automatic search with the Boolean satisfiability problem (SAT) method is implemented to search for linear approximations that match the attack settings concerning these primitives. With the newly identified approximations, we launch key-recovery attacks on GIFT-COFB, SUNDAE-GIFT, and HyENA when the underlying primitives are replaced with 16-round, 17-round, and 16-round versions of GIFT-128. The resistance of GIFT-128 against linear cryptanalysis is also evaluated. We present a 24-round key-recovery attack on GIFT-128 with a newly obtained 19-round linear approximation. We note that the attack results in this paper are far from threatening the security of GIFT-COFB, SUNDAE-GIFT, HyENA, and GIFT-128

    Automatic Search of Bit-Based Division Property for ARX Ciphers and Word-Based Division Property

    Get PDF
    Division property is a generalized integral property proposed by Todo at Eurocrypt 2015. Previous tools for automatic searching are mainly based on the Mixed Integer Linear Programming (MILP) method and trace the division property propagation at the bit level. In this paper, we propose automatic tools to detect ARX ciphers\u27 division property at the bit level and some specific ciphers\u27 division property at the word level. For ARX ciphers, we construct the automatic searching tool relying on Boolean Satisfiability Problem (SAT) instead of MILP, since SAT method is more suitable in the search of ARX ciphers\u27 differential/linear characteristics. The propagation of division property is translated into a system of logical equations in Conjunctive Normal Form (CNF). Some logical equations can be dynamically adjusted according to different initial division properties and stopping rule, while the others corresponding to r-round propagations remain the same. Moreover, our approach can efficiently identify some optimized distinguishers with lower data complexity. As a result, we obtain a 17-round distinguisher for SHACAL-2, which gains four more rounds than previous work, and an 8-round distinguisher for LEA, which covers one more round than the former one. For word-based division property, we develop the automatic search based on Satisfiability Modulo Theories (SMT), which is a generalization of SAT. We model division property propagations of basic operations and S-boxes by logical formulas, and turn the searching problem into an SMT problem. With some available solvers, we achieve some new distinguishers. For CLEFIA, 10-round distinguishers are obtained, which cover one more round than the previous work. For the internal block cipher of Whirlpool, the data complexities of 4/5-round distinguishers are improved. For Rijndael-192 and Rijndael-256, 6-round distinguishers are presented, which attain two more rounds than the published ones. Besides, the integral attacks for CLEFIA are improved by one round with the newly obtained distinguishers

    Improved Attacks on GIFT-64

    Get PDF
    One of the well-known superiorities of GIFT-64 over PRESENT lies in the correction of the strong linear hull effect. However, apart from the investigation of the 9-round linear hull effect in the design document, we find no linear attack result on GIFT-64. Although we do not doubt the security of GIFT-64 regarding the linear cryptanalysis, the actual resistance of the cipher to the linear attack should be evaluated since it promotes a comprehensive perception of the soundness of GIFT-64. Motivated by this observation, we implement an automatic search and find a 12-round linear distinguisher whose dominating trail is an optimal linear characteristic. Following that, the first 19-round linear attack is launched by utilising the newly identified distinguisher. On the other side, we notice that the previous differential attack of GIFT-64 covering 20 rounds claims the entire codebook. To reduce the data complexity of the 20-round attack, we apply the automatic method to exhaustively check 13-round differential trails with probabilities no less than 2−642^{-64} and identify multiple 13-round differentials facilitating 20-round attacks without using the full codebook. One of the candidate differentials with the maximum probability and the minimum number of guessed subkey bits is then employed to realise the first 20-round differential attack without relying on the complete codebook. Given the newly obtained results, we conjecture that the resistances of GIFT-64 against differential and linear attacks do not have a significant gap. Also, we note that the attack results in this paper are far from threatening the security of GIFT-64
    • …
    corecore